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CONTROL OF SLEW MANEUVER OF A FLEXIBLE
BEAM MOUNTED NON-RADIALLY ON A
RIGID HUB: A GEOMETRICALLY EXACT

MODELLING APPROACH
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The positioning control using a joint torque is studied for a hub–beam system with a
tip payload. In order to make the axial vibration of the beam accessible to the joint torque,
the flexible beam mounted non-radially on the rigid hub is considered. Neither model
truncation nor small deflection assumption is employed throughout the process of dynamic
modelling and controller design. A joint PD controller with additional feedback of joint
acceleration and root strain of the beam is derived using a Lyapunov-type method. Global
asymptotic stability of the desired equilibrium position is proved rigorously. The
geometrically exact formulation presented in this work can be viewed as a generalization
of the related work based on the small deflection assumption investigated in the existing
literature.
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1. INTRODUCTION

The control of a slewing elastic beam has been extensively studied in connection with
flexible robot arms and spacecrafts with flexible appendages. A vast majority of these
studies have designed controllers based on truncated finite-dimensional models (see, e.g.,
references [1–10]). Only in a few related papers have there been construction of controllers
making direct use of infinite-dimensional models (see, e.g., references [11–19]). Linear and
non-linear dynamic models with varying degrees of complexity have been considered in
these papers. However, the small-deflection assumption has been invoked in all these
studies, using either truncated finite-dimensional models or linear infinite-dimensional
models.

For the problem of a rapidly driven flexible beam, the occurrence of large elastic
deflections is inevitable. Indeed, it has been observed experimentally [20] that the tip
deflection can exceed one-tenth of the length of the beam when large rotational speed and
acceleration are involved. Numerical simulation of a hub–beam system employing a PD
joint control has also demonstrated that large tip deflections of the beam can occur even
for a realistically fast positioning operation [21]. The rest-to-rest maneuver of a
horizontally slewing torque-driven beam (without a tip payload) undergoing geometrically
exact elastic deflections has recently been studied in reference [22]. It was found that a
joint-based PD type controller stabilizes the highly non-linear coupled system described
by a set of integro-partial differential equations with coupled non-linear boundary
conditions. However, the proof of global asymptotic stability requires the assumption of
inextensibility at the root of the beam. This difficulty arises because the flexible beam was
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assumed to be mounted radially on a rigid hub [22]. Thus if the axial vibration of the beam
is excited, it cannot be suppressed by the joint torque. To overcome this difficulty, it is
suggested in the present work that the flexible beam be mounted non-radially on the rigid
hub.

In this paper, the rest-to-rest horizontal maneuver of a torque-driven hub–beam system
with a tip payload is considered. The objective of this investigation is to show that a joint-
based PD controller with additional feedback of either the joint angular acceleration of
the hub or the root strain of the beam can accomplish the maneuver with all the vibrations
suppressed asymptotically. In deriving the feedback law, neither model truncation nor
the small deflection assumption is imposed. Although feedback laws of similar
type have previously been established by many investigators (see e.g., references
[2, 3, 5, 8, 13, 15, 16, 18, 19]) using either truncated finite-dimensional models or linear
distributed parameter models, the issues of truncated error and ignored dynamics have
never been resolved. The primary contribution of this paper is thus to provide further
theoretical understanding to earlier work in this area.

2. EQUATIONS OF MOTION

The horizontal slewing hub-beam system with a tip payload driven by an externally
applied torque t(t) is considered, as shown in Figure 1. The undeformed elastic beam of
length L, area moment of inertia I, cross-sectional area A, mass per unit length Ar , mass
moment of inertia per unit length Ir , shear coefficient ks , shear modulus G, and Young’s
modulus E is mounted non-radially on the rigid hub of radius a and mass moment of
inertia Ih . The rigid payload has a mass mp with an inertia Ip with respect to its own center
of mass Q'. The point Q' is specified by the vector q1n+ q2t relative to the centroid
of the tip cross-section of the beam, where q1 and q2 are linear dimensions, and n and t
denote the unit vectors normal and tangential to the tip cross-section, respectively. It is

Figure 1. A schematic of a horizontally slewing flexible beam.
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assumed that the beam possesses a line of symmetry in the plane of bending, plane sections
orthogonal to the neutral axis remain plane during deformation, and that the line of
centroid coincides with the neutral axis.

Let o(x, y) be a floating frame fixed on the hub with x-axis coincident with the neutral
axis of the undeformed beam and let O(X, Y) be a fixed frame. The basis vectors of the
two co-ordinate frames are related by

b1 = i cos (u− g)+ j sin (u− g), (1)

b2 =−i sin (u− g)+ j cos (u− g), (2)

where u is the angular displacement of the hub and g is a fixed inclined angle of the
undeformed neutral axis of the beam (see Figure 1). It is evident from equations (1) and
(2) that b� 1 = u� b2 and b� 2 =−ub� 1. The position vector of an arbitrary point P' on the
deformed neutral axis is given by

RP' = (a cos g+ x+ u)b1 + (a sin g+ v)b2, (3)

where u(x, t) and v(x, t) are the axial and transverse displacements of the point P on the
undeformed neutral axis of the beam. The velocity and acceleration of the point P' can
be written, respectively, as

R� P' = [u̇−(a sin g+ v)u� ]b1 + [v̇+(a cos g+ x+ u)u� ]b2, (4)

R� P' = [ü−(a sin g+ v)u� −2v̇u� −(a cos g+ x+ u)u� 2]b1

+[v̈+(a cos g+ x+ u)u� +2u̇u� −(a sin g+ v)u� 2]b2. (5)

Let a(x, t) be the angle of rotation of a beam cross-section from its undeformed
configuration. Define uL = u(L, t), vL = v(L, t), and aL = a(L, t). The position vector,
velocity and acceleration of the point Q' of the tip-payload can be expressed, respectively,
as

RQ' = (a cos g+L+ uL + q1 cos aL + q2 sin aL )b1

+ (a sin g+ vL + q1 sin aL − q2 cos aL )b2, (6)

R� Q' = [(u̇L − q1ȧL sin aL + q2ȧL cos aL )

− (a sin g+ vL + q1 sin aL − q2 cos aL )u� ]b1

+ [(v̇L + q1ȧL cos aL + q2ȧL sin aL )

+ (a cos g+L+ uL + q1 cos aL + q2 sin aL )u� ]b2, (7)

R� Q' = p1b1 + p2b2, (8)

where

p1 = üL − q1(ȧ2
L cos aL + äL sin aL )+ q2(äL cos aL − ȧ2

L sin aL )

− (a sin g+ vL + q1 sin aL − q2 cos aL )u�

−2(v̇L + q1ȧL cos aL + q2ȧL sin aL )u�

−(a cos g+L+ uL + q1 cos aL + q2 sin aL )u� 2, (9)
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p2 = v̈L + q1(äL cos aL − ȧ2
L sin aL )+ q2(äL sin aL + ȧ2

L cos aL )

+ (a cos g+L+ uL + q1 cos aL + q2 sin aL )u�

+2(u̇L − q1ȧL sin aL + q2ȧL cos aL )u�

−(a sin g+ vL + q1 sin aL − q2 cos aL )u� 2. (10)

The moment of inertia forces of the elastic beam and the tip payload relative to the point
O can be computed as

M0(t)= −g
L

0

Ar (RP' ×R� P') · b3 dx−g
L

0

Ir (u� + ä) dx

−mp (RQ' ×R� Q') · b3 − Ip (u� + äL ), (11)

where b3 = b1 × b2 is used and aWL is assumed. The rotational equation of motion of the
hub-beam system can now be written as

t+M0 = Ihu� . (12)

After substituting equations (3), (5), (6), (8) and (11) into equation (12), one obtains

6Ih +g
L

0

Ar [(a cos g+ x+ u)2 + (a sin g+ v)2] dx7u�

+26g
L

0

Ar [(a cos g+ x+ u)u̇+(a sin g+ v)v̇] dx7u�

+g
L

0

Ar [(a cos g+ x+ u)v̈−(a sin g+ v)ü] dx

+g
L

0

Ir (u� + ä) dx+mp [−(a sin g+ vL + q1 sin aL − q2cos aL )p1

+ (a cos g+L+ uL + q1 cos aL + q2sin aL )p2]+ Ip (u� + aL )= t(t). (13)

In order to establish the equations of motion for the elastic deflections, a differential
element of the beam is considered, as shown in Figure 2. One can easily show from
=dRP'==dl that

(dl)2 = [(1+ ux )2 + v2
x ](dx)2, (14)

sin b= vx [(1+ ux )2 + v2
x ]−1/2, (15)

cos b=(1+ ux )[(1+ ux )2 + v2
x ]−1/2, (16)

where b(x, t) is the angle between the tangents of deformed and undeformed neutral axes
and the subscript x denotes a partial derivative with respect to x. Let the longitudinal force,
the shear force and the bending moment acting on the element be denoted by N, V and
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Figure 2. A deformed beam element.

M, respectively. Summing the forces in the x and y directions and the moments of forces
acting on the element, one obtains

Ar[ü−(a sin g+ v)u� −2vu� −(a cos g+ x+ u)u� 2]= (N cos a−V sin a)x , (17)

Ar[v̈+(a cos g+ x+ u)u� +2u̇u� −(a sin g+ v)u� 2]= (N sin a+V cos a)x , (18)

Ir(u� + ä)=Mx − vx (N cos a−V sin a)+ (1+ ux )(N sin a+V cos a), (19)

where equation (5) has been used in arriving at equations (17) and (18). Note that
equations (17)–(19) reduce to those given in [23] for the case g=0, wherein the vibration
of the beam caused by a prescribed u� (t) (the so-called spin-up problem) was studied.
Although equation (13) is not relevant to the spin-up beam dynamics, it is essential for
torque-driven beam dynamics. Now the clamped-mass boundary conditions of the beam
can be written as

u(0, t)= v(0, t)= a(0, t)=0, (20)

N(L, t)=−mpR� Q' · n=−mp (p1 cos aL + p2 sin aL ), (21)

V(L, t)=−mpR� Q' · t=mp (p1 sin aL − p2 cos aL ), (22)

M(L, t)= q1V(L, t)+ q2N(L, t)− Ip (u� + äL )

=mp [p1(q1 sin aL − q2 cos aL)− p2(q1 cos aL + q2 sin aL)]− Ip (u� + äL ). (23)
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Substituting ü, v̈ and ä from equations (17)–(19) into equation (13), performing integration
by parts and using the boundary conditions (20)–(23), one obtains an alternative but more
appealing form for equation (13):

Ihu� −V(0, t)a cos g+N(0, t)a sin g−M(0, t)= t(t). (24)

At this point, it may be worthwhile to note the following:

(i) When g=0, N(0, t) is not accessible to the input torque t(t). This implies that the
longitudinal vibration u(x, t) of the beam, if it is ever being excited, will persist even if
u� (t), v(x, t) and a(x, t) are driven to zero by t(t). This is true because no internal damping
of the beam is assumed in this work.
(ii) The equations derived thus far depend neither on the strain (small or large) nor on
the constitutive equation (linear or non-linear) of the beam.

To complete the formulation, the stress–strain relations for the homogeneous, isotropic
linearly elastic beam can be taken as

N=EAG1, V= ksGAG2, M=EIk, (25–27)

where the normal strain G1, the shear strain G2, and the bending curvature k are described
by

G1 = (1+ ux ) cos a+ vx sin a−1, G2 =−(1+ ux ) sin a+ vx cos a, k= ax ,

(28–30)

as a special case of the fully nonlinear three-dimensional strain measures given in [24].
Without prescribing equations (28)–(30) as a priori, a new derivation of these equations
is given in Appendix A.

The principle of conservation of energy can now be verified for the hub–beam system
as follows. Let the kinetic energy T and the potential energy U be written as

T=Th +Tb +Tp , (31)

where

Th = 1
2Ihu� 2, (32)

Tb = 1
2 g

L

0

Ar =R� P'=2 dx+ 1
2 g

L

0

Ip (u� + ȧ)2 dx, (33)

Tp = 1
2mp =R� Q'=2 + 1

2Ip (u� + ȧL )2 (34)

and

U= 1
2 g

L

0

(EAG2
1 + ksGAG2

2 +EIk2) dx. (35)

The time rate change of the total energy (o=T+U) of the hub–beam system can be
computed by substituting equations (4), (7) and (25)–(30) into equations (31) and (35),
making use of equations (13) and (17)–(23), integration by parts and tedious algebraic
manipulations to yield

ȯ= tu� . (36)
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It may appear that equations (24) and (36) can be obtained merely by a physical argument.
This is indeed true for the foregoing geometrically exact formulation. However, an
inadequate approximation or a premature linearization of the exact equations of motion
can destroy either equation (24) or equation (36) or both. For example, the second order
beam theory given in reference [23], which provides an appropriate account for the
centrifugal stiffening effect for the beam dynamics driven by a prescribed u� (t), fails to
satisfy equation (24) for the torque-driven beam dynamics. This is illustrated in Appendix
B. Also as illustrated in Appendix C, the effective applied force approach [25] to account
for the centrifugal stiffening effect does not satisfy equation (36) for the torque-driven
beam dynamics. The significance of using equations (24) and (36) in establishing the
stability of the torque-driven hub–beam system will be demonstrated in the next section.

3. CONTROLLER DESIGN AND STABILITY ANALYSIS

Consider the system given by equations (13), (17)–(23) and (25)–(30). It can be shown,
with some algebra, that the equilibrium states of the system without input torque are given
by u� (t)= u(x, t)= v(x, t)= a(x, t)=0 for 0E xEL and te t0, where t0 is a real
non-negative constant. The problem is to find an appropriate control t that drives the state
of the system (u, u� , u, u̇, v, v̇, a, ȧ) from the initial state (0, 0, . . . 0) to the target state
(ud , 0, . . . , 0), where ud is a constant.

Let a weighted error function with respect to the target state be the Lyapunov functional
candidate

f= o+Ka (Tb +Tp +U)+ 1
2Kp (u− ud )2, (37)

where o=Th +Tb +Tp +U, and the real constants Ka q−1 and Kp q 0 are design
parameters. It is obvious that f is positive definite and has a global minimum zero at the
target state. Using equation (36), the time rate change of f can be computed as

f� = u� [t+Ka (t− Ihu� )+Kp (u− ud)]. (38)

If t is chosen such that

t=
1

1+Ka
[KaIhu� −Kdu� −Kp (u− ud )], (39)

where the real constant Kd q 0 is also a design constant, then the target state becomes the
unique equilibrium point of the closed loop system, and equation (38) reduces to

f� =−Kdu� 2. (40)

Note that f� is negative semi-definite. Thus only stability (but not asymptotic stability)
of the target state can be concluded. However, equation (40) implies that f� (t)=0 if and
only if u� (t)=0. Thus, if one can show that u� (t)=0 for te t0 implies f(t)=0 for te t0,
then global asymptotic stability of the target state is established. Toward this end,
substituting equation (39) into equation (24) gives the closed loop dynamics for the rigid
hub:

Ihu� +Kdu� +Kpu=(1+Ka )[V(0, t)a cos g−N(0, t)a sin g+M(0, t)]+Kpud . (41)

Now suppose that u� (t)=0 for te t0. Thus u� (t)=0 for te t0. In view of equation (41),
one obtains, for te t0,

V(0, t)a cos g−N(0, t)a sin g+M(0, t)=C, (42)
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where C is a constant. Furthermore, equations (13) and (24) can be combined to yield

−
d
dt 6 g

L

0

Ar[(a cos g+ x+ u)v̇−(a sin g+ v)u̇] dx

+ g
L

0

Irȧ dx+mpfL + IpȧL7,

=V(0, t)a cos g−N(0, t)a sin g+M(0, t)

=C, (43)

where

fL =(a cos g+L+ uL + q1 cos aL + q2 sin aL )(v̇L + q1ȧL cos aL + q2ȧL sin aL )

− (a sin g+ vL + q1 sin aL − q2 cos aL )(u̇L − q1ȧL sin aL + q2ȧL cos aL ). (44)

Because f(t) is non-increasing due to equation (40), every term in equation (43) must be
bounded. Consequently, one must have C=0 for te t0. It then follows from equations
(41) and (24) that u(t)= ud and t(t)=0 for te t0. Since the remaining free vibration
problem (with the fixed hub) is independent of the hub radius a and the inclined
angle g of the beam, V(0, t)a cos g−N(0, t)a sin g+M(0, t)=0 for te t0 implies
V(0, t)=N(0, t)=M(0, t)=0 for te t0. It then leads to ux (0, t)= vx (0, t)= ax (0, t)=0
for te t0 by virtue of equations (28)–(30) and (20). From equations (17)–(19) and
(25)–(30), one further obtains uxx (0, t)= vxx (0, t)= axx (0, t)=0 for te t0. Now it is
straightforward to show, by taking repeated x-differentiation of equations (17)–(19), that
all higher order partial derivatives of u, v and a with respect to x are zero at x=0. As
a result, it must be true that u(x, t)= n(x, t)= a(x, t)=0 for 0E xEL, te t0. At this
point, we have shown that u� (t)=0 for te t0 implies f(t)=0 for te t0. Note that the
foregoing results were reached without specifying t0. Referring now to equation (41), it is
clear that u� (t) approaches zero asymptotically as t:a. Therefore, f(t) and f� (t)=−Kdu� 2

tend to zero as t:a. Global convergence follows from equation (37). The proof of global
asymptotic stability is completed.

Note that the control law given by equation (39) involves the feedback of angular
position, angular velocity and angular acceleration of the joint. However, by the
substitution of Ihu� from equation (24) into equation (39), one obtains the PD plus strain
feedback controller as

t=Ka [V(0, t)a cos g−N(0, t)a sin g+M(0, t)]−Kdu� −Kp (u− ud ). (45)

An important observation can be made at this point: if a simplified dynamic model were
adopted at the very begining, the stability result would remain unaffected so long as the
validity of equations (24) and (36) is preserved. It may be remarked that the proof of
asymptotic stability even for a non-linear distributed parameter model, based on the small
deflection assumption, of the hub–beam system is not yet available in the existing
literature.

4. CONCLUDING REMARKS

The positioning control of a hub–beam system with a tip payload was considered, for
the first time, under the framework of geometrically exact formulation. The non-radially
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mounted flexible beam makes the axial vibration of the beam controllable to the joint
torque. The result presented is a more general theory as compared with the related work
relying on the small deflection assumption existing in the current literature. An important
implication of this study is that the stability of the joint-based controller designed based
on truncated finite-dimensional models or simplified linear distributed parameter models
is guaranteed as long as the model simplifications of the open loop system does not destroy
the conservation equations for the angular momentum and energy. Although the stability
is guaranteed, the performance (transient responses, etc.) may degrade due to truncation
error and ignored dynamics. Since the methods of numerical simulation for a slewing beam
using the geometrically exact beam model are well-documented in the literature, they are
not pursued in this work.
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APPENDIX A: A DERIVATION OF THE NON-LINEAR STRAIN MEASURES

Instead of using Newton’s second law, the equations of motion can also be derived via
the extended Hamilton’s principle. Without loss of generality, the hub–beam system
without a tip payload is considered. The strains, which depend on the deformation
gradient, can be written as

G1 =G1(ux , vx , a), G2 =G2(ux , vx , a), k= ax , (A1–A3)

where the dependence of a in equations (A1) and (A2) is due to equations (17) and (18),
and equation (A3) is a direct consequence of the definition of bending curvature. As a
result of the application of Hamilton’s principle with the kinetic and potential energies
given by equations (31)–(35) and the stress–strain relations given by equations (25)–(27),
the equations of motion related to the deformation variables are given by

Ar [ü−(a sin g+ v)u� −2v̇u� −(a cos g+ x+ u)u� 2]=0N 1G1

1ux
+V

1G2

1ux1x

, (A4)

Ar [v̈+(a cos g+ x+ u)u� −2u̇u� −(a sin g+ v)u� 2]=0N 1G1

1vx
+V

1G2

1vx1x

, (A5)

Ir (u� + ä)=Mx −0N 1G1

1a
+V

1G2

1a 1. (A6)
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After comparing equations (A4)–(A6) with equations (17)–(19) and making use of
clamped–free boundary conditions, one can easily obtain

N01G1

1ux
−cos a1+V01G2

1ux
+sin a1=0, (A7)

N01G1

1vx
−sin a1+V01G2

1vx
−cos a1=0, (A8)

N$1G1

1a
+(1+ ux ) sin a− vx cos a%+V$1G2

1a
+(1+ ux ) cos a+ vx sin a%=0. (A9)

Equations (A7)–(A9) are satisfied if G1 and G2 are solutions of

1G1

1ux
=cos a,

1G1

1vx
=sin a,

1G1

1a
= vx cos a−(1+ ux ) sin a. (A10)

1G2

1ux
=−sin a,

1G2

1vx
=cos a,

1G2

1a
=−(1+ ux ) cos a− vx sin a. (A11)

Hence equations (28) and (29) can be obtained provided that G1(0, t)= ux (0, t) and
G2(0, t)= vx (0, t).

APPENDIX B: THE INCONSISTENCY OF THE SECOND ORDER BEAM THEORY FOR
TORQUE-DRIVEN BEAM DYNAMICS

For simplicity, the hub–beam system without a payload is considered. According to the
second order beam theory given in reference [23], one may write

N�=EAG�1 =EA(ux + avx − 1
2a

2), (B1)

V�= ksGAG�2 = ksGA(vx − a− aux ), (B2)

M� =EIax . (B3)

The equations of motion for the deformation variables are given by [23]:

Ar [ü−(a sin g+ v)u� −2v̇u� −(a cos g+ x+ u)u� 2]= (N�− aV�)x , (B4)

Ar [v̈+(a cos g+ x+ u)u� +2u̇u� −(a sin g+ v)u� 2]= (V�+ aN�)x , (B5)

Ir (u� + ä)=M�x +(1+G�1)V�−G�2N�. (B6)

After substituting ü, v̈ and ä from equations (B4)–(B6) into equation (13), one obtains

Ihu� −V�(0, t)a cos g+N�(0, t)a sin g−M�(0, t)= t(t)+ 1
2 g

L

0

a2V� dx, (B7)

which is not consistent with equation (24). One might be tempted to neglect all terms of
third degree in the elastic variables in equations (B4)–(B6), so that the last term in equation
(B7) can be dropped. However, accompanying this procedure is the omission of some
strain energy terms computed from equations (B1)–(B2). As a result, the principle of
conservation of energy is destroyed. Hence the second order beam theory is not an
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adequate approximation for torque-driven beam dynamics from an angular momentum
viewpoint.

APPENDIX C: THE INCONSISTENCY OF THE EFFECTIVE APPLIED FORCE
APPROACH FOR TORQUE-DRIVEN BEAM DYNAMICS

According to reference [25], the kinetic and potential energies of the hub–beam system
with g=mp = Ip = Ir =0 can be respectively, written as

T= 1
2Ihu� 2 + 1

2 g
L

0

Ar{[(a+ x)u� + v̇]2 + (vu� )2} dx, (C1)

U= 1
2 g

L

0

EIv2
xx dx+ 1

2u�
2 g

L

0

ArSv2
x dx, (C2)

where

S= g
L

x

(a+ x) dx. (C3)

Note that a fictitious work term caused by the centrifugal force has been included in U
in an ad hoc manner [26]. As a result of the application of Hamilton’s principle, one obtains
the following equations of motion [25]:

6Ih + g
L

0

Ar [(a+ x)2 + v2 −Sv2
x ] dx7u� +2u� g

L

0

Ar (vv̇−Svxv̇x ) dx

+ g
L

0

Ar (a+ x)v̈ dx= t, (C4)

Ar{v̈+(a+ x)u� − u� 2[v+(Svx )x )}+EIvxxxx =0. (C5)

Using equations (C1)–(C5), it can be easily shown that

d
dt

(T+U)= tu� +
d
dt 0u� 2 g

L

0

ArSv2
x dx1. (C6)

This result is not consistent with equation (36). The reason for this flaw is that the
centrifugal force is not an externally applied force but, rather, an inertia effect. Hence the
effective applied force approach is not adequate for torque-driven beam dynamics from
an energy viewpoint.


